Supplementary Problems

5.46 Use the free body diagram method to derive the differential equations governing the motion of the system of Fig. 5-27 using x_{1}, x_{2}, and x_{3} as generalized coordinates.

Fig. 5-27
Ans.

$$
\begin{gathered}
m \dot{x}_{1}+c \dot{x}_{1}+2 k x_{1}-k x_{2}=0 \\
2 m \dot{x}_{2}-k x_{1}+2 k x_{2}-k x_{3}=0 \\
m \ddot{x}_{3}-k x_{2}+3 k x_{3}=0
\end{gathered}
$$

5.47 Use the free body diagram method to derive the differential equations governing the motion of the system of Fig. 5-28 using θ_{1} and θ_{2} as generalized coordinates.

Fig. 5-28

Ans.

$$
\begin{aligned}
& 1 m L^{2} \ddot{\theta}_{1}+\frac{{ }_{2} k L^{2} \theta_{1}-3 k L^{2} \theta_{2}=0}{}=0 \\
& { }_{3} m L^{2} \ddot{\theta}_{2}-3 k L^{2} \theta_{1}+\frac{9}{2} k L^{2} \theta_{2}=0
\end{aligned}
$$

5.48 Use the free body diagram method to derive the differential equations governing the motion of the system of Fig. 5-29 using θ, x_{1}, and x_{2} as generealized coordinates.

Fig. 5-29

Ans.

$$
\begin{gathered}
3 m L^{2} \ddot{\theta}+\frac{2}{2} k L^{2} \theta-\frac{1}{2} k L x_{1}=\frac{1}{2} F_{1}(t) L \\
2 m \ddot{x}_{1}-\frac{1}{2} k L \theta+3 k x_{1}-2 k x_{2}=0 \\
m \ddot{x}_{2}-2 k x_{1}+2 k x_{2}=F_{2}(t)
\end{gathered}
$$

5.49 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-27 using x_{1}, x_{2}, and x_{3} as generalized coordinates.

Ans.

$$
\left[\begin{array}{ccc}
m & 0 & 0 \\
0 & 2 m & 0 \\
0 & 0 & m
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{lll}
c & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
2 k & -k & 0 \\
-k & 2 k & -k \\
0 & -k & 3 k
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

5.50 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-28 using θ_{1} and θ_{2} as generalized coordinates. Assume small θ, and write the differential equations in matrix form.

Ans.

$$
\left[\begin{array}{cc}
3 m L^{2} & 0 \\
0 & \frac{2}{8} m L^{2}
\end{array}\right]\left[\begin{array}{cc}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\frac{9}{3} k L^{2} & -3 k L^{2} \\
-3 k L^{2} & \frac{9}{2} k L^{2}
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

5.51 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-29 using θ, x_{1}, and x_{2} as generalized coordinates.
Ans.

$$
\left[\begin{array}{ccc}
\frac{1}{3} m L^{2} & 0 & 0 \\
0 & 2 m & 0 \\
0 & 0 & m
\end{array}\right]\left[\begin{array}{c}
\ddot{\theta} \\
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ccc}
\frac{3}{3} k L^{2} & -\frac{1}{2} k L & 0 \\
-\frac{1}{2} k L & 3 k & -2 k \\
0 & -2 k & 2 k
\end{array}\right]\left[\begin{array}{c}
\theta \\
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} F_{1}(t) L \\
0 \\
F_{2}(t)
\end{array}\right]
$$

5.52 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-30 using θ_{1} and θ_{2} as generalized coordinates. Assume small θ_{1} and θ_{2}.

Fig. 5-30

Ans.

$$
\left[\begin{array}{cc}
\frac{1}{3} m L^{2} & 0 \\
0 & \frac{2}{8} m L^{2}
\end{array}\right]\left[\begin{array}{c}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
k a^{2}+\frac{1}{2} m g L & -k a^{2} \\
-k a^{2} & k\left(a^{2}+\frac{9}{4} L^{2}\right)+\frac{3}{4} m g L
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

5.53 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-31 using x and θ as generalized coordinates. Assume small θ.
$A B ;$ Bar of mass 2 m and centroidal moment of inertia l

Fig. 5-31

Ans.

$$
\left[\begin{array}{cc}
3 m & \frac{1}{2} m L \\
\frac{1}{2} m L & I+\frac{1}{4} m L^{2}
\end{array}\right]\left[\begin{array}{c}
x \\
\ddot{\theta}
\end{array}\right]+\left[\begin{array}{cc}
2 k & 0 \\
0 & \frac{1}{2} k L^{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

5.54 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-31 using x_{1} and x_{2} as generalized coordinates.

Ans.

$$
\left[\begin{array}{cc}
\frac{m}{2}+\frac{I}{L^{2}} & \frac{m}{2}-\frac{l}{L^{2}} \\
\frac{m}{2}-\frac{l}{L^{2}} & \frac{3}{2} m+\frac{l}{L^{2}}
\end{array}\right]\left[\begin{array}{l}
\ddot{x}_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

5.55 Use Lagrange's equations to derive the motion of the system of Fig. 5-32 using x_{1}, x_{2}, and θ as generalized coordinates.

Fig. 5-32

Ans.

$$
\left.\left.\left[\begin{array}{ccc}
\frac{1}{4} m L^{2} & 0 & 0 \\
0 & m & 0 \\
0 & 0 & 2 m
\end{array}\right]\left[\begin{array}{c}
\ddot{\theta} \\
\ddot{x}_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ccc}
\frac{10}{9} k L^{2} & \frac{1}{3} k L & -\frac{3}{3} k L \\
\frac{1}{3} k L & k & 0 \\
-\frac{3}{j} k L & 0 & k
\end{array}\right]\left[\begin{array}{c}
\theta \\
x_{1} \\
x_{2}
\end{array}\right]=\right] \begin{array}{c}
0 \\
0 \\
F(t)
\end{array}\right]
$$

5.56 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-33 using x_{1}, and x_{2} as generalized coordinates. Assume the disk rolls without slip.

Fig. 5-33

Ans.

$$
\left[\begin{array}{cc}
\frac{3}{2} m & 0 \\
0 & m
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
k\left(2+2 \frac{a}{r}+\frac{a^{2}}{r^{2}}\right) & -k\left(1+\frac{a}{r}\right) \\
-k\left(1+\frac{a}{r}\right) & 3 k
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

5.57 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-34 using x_{1}, x_{2}, and θ as generalized coordinates.

Fig. 5-34

Ans.

$$
\left[\begin{array}{ccc}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & I
\end{array}\right]\left[\begin{array}{c}
\ddot{x}_{1} \\
\ddot{x}_{2} \\
\ddot{\theta}
\end{array}\right]+\left[\begin{array}{ccc}
k & 0 & -3 k r \\
0 & 2 k & -6 k r \\
-3 k r & -6 k r & 28 k r^{2}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\theta
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

5.58 Derive the differential equations governing the motion of the system of Fig. 5-35 using θ_{1} and θ_{2}, as generalized coordinates.

Fig. 5-35

Ans.

$$
\left[\begin{array}{cc}
I & 0 \\
0 & 2 I
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]+\frac{J G}{L}\left[\begin{array}{rr}
3 & -2 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

5.59 Derive the differential equations governing the motion of the system of Fig. 5-36 using θ_{1}, θ_{2}, and x as generalized coordinates.

Fig. 5-36

Ans.

$$
\left[\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & m
\end{array}\right]\left[\begin{array}{c}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2} \\
\ddot{x}^{2}
\end{array}\right]+\left[\begin{array}{ccc}
k_{\prime_{1}}+k_{t_{2}} & -k_{t_{1}} & 0 \\
-k_{t_{1}} & k_{r_{2}}+k r^{2} & -k r \\
0 & -k r & k
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
x
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

5.92 Determine the general free vibration response of the system of Fig. 5-40.

Fig. 5-40
Ans.

$$
\begin{aligned}
& e^{-0.26 x t}\left\{C_{1}\left[\begin{array}{c}
0.732 \\
1
\end{array}\right] \cos 7.96 t+C_{2}\left[\begin{array}{c}
0.732 \\
1
\end{array}\right] \sin 7.96 t\right\} \\
& +e^{-3.33}\left\{C_{3}\left[\begin{array}{c}
-2.73 \\
1
\end{array}\right] \cos 14.92 t+C_{4}\left[\begin{array}{c}
-2.73 \\
1
\end{array}\right] \sin 14.92 t\right\}
\end{aligned}
$$

