Supplementary Problems

5.46 Use the free body diagram method to derive the differential equations governing the motion of the system of Fig. 5-27 using x₁, x₂, and x₃ as generalized coordinates.

Fig. 5-27

Ans.

- $m\ddot{x}_{1} + c\dot{x}_{1} + 2kx_{1} kx_{2} = 0$ $2m\ddot{x}_{2} - kx_{1} + 2kx_{2} - kx_{3} = 0$ $m\ddot{x}_{3} - kx_{2} + 3kx_{3} = 0$
- 5.47 Use the free body diagram method to derive the differential equations governing the motion of the system of Fig. 5-28 using θ_1 and θ_2 as generalized coordinates.

Fig. 5-28

Ans.

$$\frac{1}{3}mL^2\ddot{\theta}_1 + \frac{9}{4}kL^2\theta_1 - 3kL^2\theta_2 = 0$$
$$\frac{9}{8}mL^2\ddot{\theta}_2 - 3kL^2\theta_1 + \frac{9}{2}kL^2\theta_2 = 0$$

5.48 Use the free body diagram method to derive the differential equations governing the motion of the system of Fig. 5-29 using θ , x_1 , and x_2 as generalized coordinates.

Fig. 5-29

Ans.

$$\frac{1}{3}mL^{2}\theta + \frac{3}{4}kL^{2}\theta - \frac{1}{2}kLx_{1} = \frac{1}{2}F_{1}(t)L$$

$$2m\ddot{x}_{1} - \frac{1}{2}kL\theta + 3kx_{1} - 2kx_{2} = 0$$

$$m\ddot{x}_{2} - 2kx_{1} + 2kx_{2} = F_{2}(t)$$

5.49 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-27 using x_1 , x_2 , and x_3 as generalized coordinates.

Ans.

m	0	0	x,		C	0	0	x,		2k	-k 2k -k	0	$\begin{bmatrix} x_1 \end{bmatrix}$	11	0
0	2m	0	X ₂	+	0	0	0	<i>x</i> ₂	=	-k	2k	-k	<i>x</i> ₂	=	0
Lo	0	m	_ <i>X</i> 3_		0	0	0_	_ x,_		0	-k	3k _	_x3_		_0_

5.50 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-28 using θ_1 and θ_2 as generalized coordinates. Assume small θ , and write the differential equations in matrix form.

Ans.

$$\begin{bmatrix} \frac{1}{2}mL^2 & 0\\ 0 & \frac{9}{8}mL^2 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1\\ \ddot{\theta}_2 \end{bmatrix} + \begin{bmatrix} \frac{9}{4}kL^2 & -3kL^2\\ -3kL^2 & \frac{9}{2}kL^2 \end{bmatrix} \begin{bmatrix} \theta_1\\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

170

- 5.51 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-29 using θ , x_1 , and x_2 as generalized coordinates.
 - Ans.

ſ	$\frac{1}{3}mL^2$	0	0	[#		$\begin{bmatrix} \frac{5}{4}kL^2\\ -\frac{1}{2}kL\\ 0 \end{bmatrix}$	$-\frac{1}{2}kL$	0]	[O	11	$\begin{bmatrix} \frac{1}{2}F_1(t)L\\0\\F_2(t)\end{bmatrix}$	
	0	2m	0	X,	+	$-\frac{1}{2}kL$	3k	-2k	x,	=	0	
L	0	0	m	. X2_		0	-2k	2k	_x2_		$F_2(t)$	

5.52 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-30 using θ_1 and θ_2 as generalized coordinates. Assume small θ_1 and θ_2 .

Fig. 5-30

Ans.

$$\begin{bmatrix} \frac{1}{2}mL^2 & 0\\ 0 & \frac{2}{3}mL^2 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1\\ \ddot{\theta}_2 \end{bmatrix} + \begin{bmatrix} ka^2 + \frac{1}{2}mgL & -ka^2\\ -ka^2 & k(a^2 + \frac{2}{3}L^2) + \frac{3}{4}mgL \end{bmatrix} \begin{bmatrix} \theta_1\\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

5.53 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-31 using x and θ as generalized coordinates. Assume small θ .

Fig. 5-31

Ans.

 $\begin{bmatrix} 3m & \frac{1}{2}mL \\ \frac{1}{2}mL & I + \frac{1}{4}mL^2 \end{bmatrix} \begin{bmatrix} \vec{x} \\ \vec{y} \end{bmatrix} + \begin{bmatrix} 2k & 0 \\ 0 & \frac{1}{2}kL^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

5.54 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-31 using x_1 and x_2 as generalized coordinates.

Ans.

$$\begin{bmatrix} \frac{m}{2} + \frac{l}{L^2} & \frac{m}{2} - \frac{l}{L^2} \\ \frac{m}{2} - \frac{l}{L^2} & \frac{3}{2}m + \frac{l}{L^2} \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

5.55 Use Lagrange's equations to derive the motion of the system of Fig. 5-32 using x_1 , x_2 , and θ as generalized coordinates.

Fig. 5-32

Ans.

$$\begin{bmatrix} \frac{1}{9}mL^2 & 0 & 0\\ 0 & m & 0\\ 0 & 0 & 2m \end{bmatrix} \begin{bmatrix} \ddot{\theta}\\ \ddot{x}_1\\ \ddot{x}_2 \end{bmatrix} + \begin{bmatrix} \frac{19}{9}kL^2 & \frac{1}{3}kL & -\frac{3}{8}kL\\ \frac{1}{3}kL & k & 0\\ -\frac{3}{3}kL & 0 & k \end{bmatrix} \begin{bmatrix} \theta\\ x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ F(t) \end{bmatrix}$$

5.56 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-33 using x_1 , and x_2 as generalized coordinates. Assume the disk rolls without slip.

Fig. 5-33

172

Ans.

$$\begin{bmatrix} \frac{3}{2}m & 0\\ 0 & m \end{bmatrix} \begin{bmatrix} \frac{x_1}{x_2} \end{bmatrix} + \begin{bmatrix} k\left(2+2\frac{a}{r}+\frac{a^2}{r^2}\right) & -k\left(1+\frac{a}{r}\right)\\ -k\left(1+\frac{a}{r}\right) & 3k \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

5.57 Use Lagrange's equations to derive the differential equations governing the motion of the system of Fig. 5-34 using x_1 , x_2 , and θ as generalized coordinates.

Fig. 5-34

Ans.

$$\begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \\ \ddot{\theta} \end{bmatrix} + \begin{bmatrix} k & 0 & -3kr \\ 0 & 2k & -6kr \\ -3kr & -6kr & 28kr^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \theta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

5.58 Derive the differential equations governing the motion of the system of Fig. 5-35 using θ_1 and θ_2 , as generalized coordinates.

Fig. 5-35

174 FREE VIBRATIONS OF MULTI-DEGREE-OF-FREEDOM SYSTEMS [CHAP. 5

Ans.

$$\begin{bmatrix} I & 0 \\ 0 & 2I \end{bmatrix} \begin{bmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \end{bmatrix} + \frac{JG}{L} \begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

5.59 Derive the differential equations governing the motion of the system of Fig. 5-36 using θ_1 , θ_2 , and x as generalized coordinates.

Fig. 5-36

Ans.

$$\begin{bmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & m \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \\ \ddot{x} \end{bmatrix} + \begin{bmatrix} k_{i_1} + k_{i_2} & -k_{i_1} & 0 \\ -k_{i_1} & k_{i_2} + kr^2 & -kr \\ 0 & -kr & k \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

5.92 Determine the general free vibration response of the system of Fig. 5-40.

~